目的に応じたデジタル化

22j1-115 教科書 P46-P47

目的に応じたデジタル化

•目的に応じたデジタル化

- •S:目的に応じたデジタル化の工夫がよく理解でき、特性を踏まえて活用しようと思った
- •A:目的に応じたデジタル化の工夫がよく理解できた
- •B:目的に応じたデジタル化の工夫が理解できた
- •C:目的に応じたデジタル化の工夫が理解できなかった

目的に応じたデジタル化

22j1-115 教科書 P46-P47

標本化の精度と量子化のレベル

- •情報をデジタル化:必ず劣化が起こる
 - •標本化誤差:標本化で起こる誤差
 - 量子化誤差:量子化で起こる誤差
- ・劣化を防ぐには
 - •標本化の精度を上げる
 - 量子化のレベルを細かくする
 - データ量が大きくなる

情報の圧縮

- デジタルデータは圧縮が可能なことが多い
 - 可逆圧縮と非可逆圧縮がある
- •可逆圧縮
 - ・元の状態に完全に戻せる
- 非可逆圧縮
 - 元の状態に完全には戻せないが効率よく圧縮できる

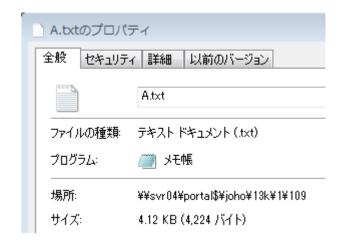
可逆圧縮

やってみよう

- 1. デスクトップの[教材]フォルダにA.txt と B.txt
- 2.A.txt を右クリック
- 3.[送る]→[圧縮(zip形式)フォルダー]とクリック
- 4.B.txt も同様に圧縮する
- 5.A.txtを右クリック
- 6.[プロパティ]をクリック
- 7.B.txt, A.zip, B.zipも同様にプロパティを開く
- 8.サイズを比較する

終わったら A.txt, B.txtを ダブルクリックして 中身の違いを 確かめる

実際の圧縮の様子


•40960文字のデータ どちらも42,240バイト

VWOxt]EjxWRSsdHI
Z]uvxpnkevFtepMN
IUXIhx\text{HCcUDCFMd}
V[`Mnx \text{\text{YEtwDTMIw}}

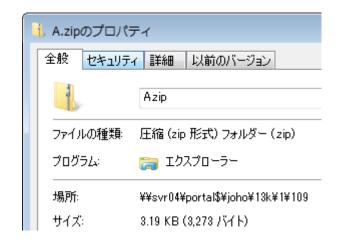
アルファベットと記号:57種類

ADDACAAAABBABABA DCABADBBCBCCAACA DBADADACCACBCADD ABBBCBDBDBADBBCC

ABCDの4種のアルファベット

ZIP圧縮すると

アルファベットと記号:57種類


ABCDの4種のアルファベット

VWOxt]EjxWRSsdHI Z]uvxpnkevFtepMN IUXIhx¥HCcUDCFMd V[`Mnx_¥EtwDTMIw

3,872バイト

ADDACAAAABBABABA DCABADBBCBCCAACA DBADADACCACBCADD ABBBCBDBDBADBBCC

2,125バイト

同じ文字・同じパターンをまとめる

- AAAならA3のようにまとめる
 - AAABBAAAABCBCBCCC (17文字)
 - A3B2A4BCBCBC3 (13文字)
- 同じパターンをまとめて表す
 - AAABBAAAABCBCBCCC (17文字)
 - AA=a, AB=b, CB=cとすると abBaAbccCCC (11文字)

•元のデータによって圧縮率が変わる

画像の非可逆圧縮

非可逆圧縮 134KBと32.2KBの画像

よく見ると

よく見ると

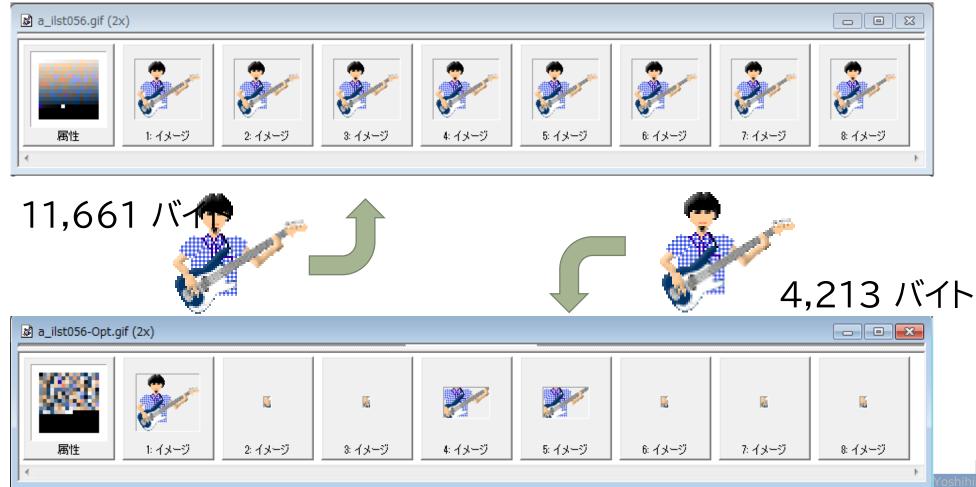
画像の非可逆圧縮

- 画像の非可逆圧縮
 - 人間の目を効率よくだます手法
- •色を減らす
 - 赤っぽい黒・青っぽい黒・・・ →みんな同じ黒に
- 色は急に変わらない
 - 周りの画素とあわせてブロックで記録

動画の圧縮

実際の例

・全く同じ動画に見える


11,661 バイト

4,213 バイト

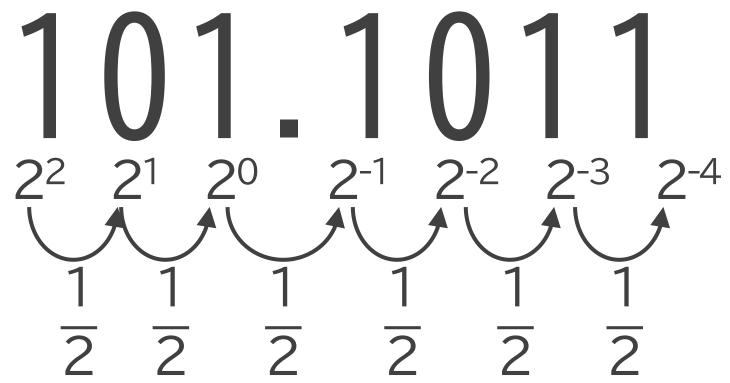
2つの違い

•動く部分だけ記録すると圧縮できる

Yoshihiro Sato All rights reser

動画の圧縮

- YouTubeなどの動画は圧縮されている
- 地デジ・DVD・Blu-rayなども圧縮されている
- •動く部分と動かない部分に分けて記録する
 - 2つの動く部分から間のコマを生成すると倍速に
- うまく圧縮できないこともある
 - スティックバルーン
 - 銀テ


圧縮の善し悪し

- ・メリット
 - 綺麗な画像を電波で送れる/たくさん保存できる
 - ・動いた部分がわかる→コマを増やせる
- デメリット
 - まっすぐな線もよく見るとギザギザ
 - キラキラした画像は全面モザイクに

二進法の小数

2進法と小数

・2進法の小数

•10進法にすると 4+1+0.5+0.125+0.0625= 5.6875

10進法の0.1を2進法であらわすと

- 答え 0.00011001100… 循環小数になる
- ある桁で制限すると誤差が出る

【解き方】
 小数部を2倍して整数になったところを1にする
 0.1 0.2 0.4 0.8 1.6 1.2 0.4 0.8 …
 0 0 0 0 1 1 0 0 …

二進法の負の数

- 何ビットで表すか あらかじめ決める
- 最上位の桁が 1の数を負の数と する

10進法	2進法
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

10進法	2進法
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

•-6と3を足すと

$$\frac{1010}{+0011}$$
 $\frac{1010}{1101}$

10進法	2進法
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

10進法	2進法
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

$$\begin{array}{rrr}
1011 & 1110 \\
+ 0011 & + 0100 \\
\hline
1110 & 10010
\end{array}$$

©2022 Yoshihiro Sato All rights reserve

- 最初に何ビットで正負の数を表すか決める
- 反転して1を足す
 - この数を補数という
- 例:2進法4ビットで正負の数を表すとき、 0100(10進法で4)の補数